VARIASI WARNA

Tersedia berbagai pilihan warna

Terbuat dari besi plat dilapisi powder coating

RODA PINTU

Terbuat dari baja tahan karat

Terbukti kekuatannya

REL PINTU

Tahan Karat

Kuat menahan beban pintu

MOBIL BAGUS

WINA Pintu Garasinya...

Kuat, aman, awet dan berkualitas

VARIASI WARNA

Tersedia berbagai pilihan warna

Terbuat dari besi plat dilapisi powder coating

Galvanize

On 15.04
Zinc coatings prevent corrosion of the protected metal by forming a physical barrier, and by acting as a sacrificial anode if this barrier is damaged. When exposed to the atmosphere, zinc reacts with oxygen to form zinc oxide, which further reacts with water molecules in the air to form zinc hydroxide. Finally zinc hydroxide reacts with carbon dioxide in the atmosphere to yield a thin, impermeable, tenacious and quite insoluble dull grey layer of zinc carbonate which adheres extremely well to the underlying zinc, so protecting it from further corrosion, in a way similar to the protection afforded to aluminium and stainless steels by their oxide layers.

Hot dip galvanizing deposits a thick robust layer that may be more than is necessary for the protection of the underlying metal in some applications. This is the case in automobile bodies, where additional rust proofing paint will be applied. Here, a thinner form of galvanizing is applied by electroplating, called "electrogalvanization". However, the protection this process provides is insufficient for products that will be constantly exposed to corrosive materials such as salt water. Nevertheless, most nails made today are electro-galvanized.

As noted previously, both mechanisms are often at work in practical applications. For example, the traditional measure of a coating's effectiveness is resistance to a salt spray. Thin coatings cannot remain intact indefinitely when subject to surface abrasion, and the galvanic protection offered by zinc can be sharply contrasted to more noble metals. As an example, a scratched or incomplete coating of chromium actually exacerbates corrosion of the underlying steel, since it is less electrochemically active than the substrate.

The size of crystallites in galvanized coatings is an aesthetic feature, known as spangle. By varying the number of particles added for heterogeneous nucleation and the rate of cooling in a hot-dip process, the spangle can be adjusted from an apparently uniform surface (crystallites too small to see with the naked eye) to grains several centimeters wide. Visible crystallites are rare in other engineering materials. Protective coatings for steel constitute the largest use of zinc and rely upon the galvanic or sacrificial property of zinc relative to steel.

Thermal diffusion galvanizing is a new "green" process which creates a zinc coating metallurgically similar to hot dip galvanizing. Instead of dipping parts in molten zinc, zinc is applied in a powder form with accelerator chemicals. The parts and the zinc compound are sealed in a drum which is rotated in an oven. Due to accelerator chemicals added to the zinc powder, the zinc/iron diffusion (alloying) takes place at a lower temperature than hot dip galvanizing, and results in a more uniform and wear resistant coating. The process also eliminates the need for hazardous caustic, acid, and flux baths required to prepare parts for hot dip galvanizing. The unique crystal structure formed by the process provides a strong bond with paint, powder coating, and rubber overmolding processes.

source from:http://en.wikipedia.org/wiki/Galvanized

0 Response to "Galvanize"